Part 2: Operating System Functions What is an Operating System?

Introduction, evolution, structure e A program which controls the execution of all
other programs (systems and applications).

* Processes and scheduling Once an OS is loaded it runs indefinitely,

e Memory management supporting other system and application programs.
o File management e Acts as an intermediary between the user(s) and
e note: 1/0 and device management will be the computer. Creates a virtual machine.
(re)visited in part 3 o Objectives:
— convenience of software development,
— ensure correct use of hardware,
— sharing (several apps (several users)),
— protection,
— throughput,
— service to *all*,
— efficiency (minimal overhead),
— extensibility.
® OS Fdns Part 2: OS Functions — 40 ® OS Fdns Part 2: OS Functions — Introduction 41
An Abstract View In The Beginning. . .
e 1949: First stored-program machine (EDSAC)
~ ~ 2,
& X o o o o | ~ . ou "
5 5 e to ~ 1955: “Open Shop”.
— large machines with vacuum tubes.
- — 1/O by paper tape / punch cards.
ety Sy — user = programmer = operator.
t t t e To manage more efficiently, hire an operator:
Hardware
— programmers write programs and submit
) tape/cards to operator.
¢ The Operating System (OS): — operator feeds cards, collects output from
— controls all execution. printer.
— multiplexes resources betweer.1 applications. « Management like it.
— abstracts away from complexity.
] o e Programmers hate it.
e Typically also have some libraries and some tools
provided with OS. e Operators hate it.
e Are these part of the OS? > need something better.
— no-one can agree. . .
e For us, the OS =~ the kernel.

® OS Fdns Part 2: OS Functions — Introduction 42 ® OS Fdns Part 2: OS Functions — Evolution 43

Batch Systems Multi-Programming

e Introduction of tape drives allow batching of jobs:

Job 4 Job 4 Job 4
— programmers put jobs on cards as before. Job 3 Job 3 sob 3
— all cards read onto a tape.
— operator carries input tape to computer. Job 2 Job 2 Job 2
— results written to output tape. Job 1 Job 1 Job 1
— output tape taken to printer. OIS’;:;ZZ”J O’S’;;‘:Z’g OIS’;:;‘;:":&'
o Computer now has a resident monitor: Time »

— initially control is in monitor.
— monitor reads job and transfers control. e Use memory to cache jobs from disk = more than

— at end of job, control transfers back to monitor. one job active simultaneously, e.g. 0S/360

e Two stage scheduling:

1. select jobs to load: job scheduling.
2. select resident job to run: CPU scheduling.

e Even better: spooling systems

— use magnetic disk to cache input tape.
— use interrupt driven 1/0.

— operator redundant? e Where are programs loaded? - see memory

management. Fixed partitions (waste space).

e Monitor now schedules jobs. . . Contiguous loading - leads to fragmentation.
e CPU utilisation improved - but still only one job at e Users want more interaction = time-sharing:
once. e.g. CTSS, Unix, VMS, Windows NT. . .
® OS Fdns Part 2: OS Functions — Evolution 44 ® OS Fdns Part 2: OS Functions — Evolution 45
Monolithic Operating Systems Dual-Mode Operation

e Want to stop buggy (or malicious) program from
doing bad things.

= provide hardware support to differentiate between
(at least) two modes of operation.

1. User Mode : when executing on behalf of a user
(i.e. application programs).

S/IW .
A 3 3 2. Kernel Mode : when executing on behalf of the
operating system.
i Pre—multiprogramming QS structure, (“modern” e Hardware contains a mode-bit, e.g. 0 means kernel,
examples are DOS, original MacOS) 1 means user (part of processor status).

e Problem: applications can e.g. e Make certain machine instructions only possible in

— trash OS software. kernel mode. . .
— trash another application.
_ external device interrupt
hog CPU fault/exception
— abuse |/O devices. software interrupt (system call) (see later)

(all use interrupt mechanism)

— etc. ..
Kernel
i A reset, >
e No good for fault containment (or multi-user). (another/ise of _ Mot
m)

interrupt mechanisi
set user mode

e Need a better solution. . . (a privileged instruction)

® OS Fdns Part 2: OS Functions — Structures & Protection Mechanisms 46 ® OS Fdns Part 2: OS Functions — Structures & Protection Mechanisms 47

Protecting 1/0 & Memory

o First try: make |/O instructions privileged. e.g.

DEC-10

applications can't mask interrupts.
applications can't control I/O devices.

e But:

) 4 Application can rewrite interrupt vectors.

X Some devices accessed via memory-mapped 1/0

e Hence need to protect memory also. . .

e e.g. define a base and a limit for each program.

O0xXFFFF

0xD800

0x9800

0x5000

0x3000

0x0000

Job 4

Job 3

limit register

Job 2

0x4800

0x5000

Job 1

Operating
System

base register

e Accesses outside allowed range are detected.

OS Fdns Part 2: OS Functions — Structures & Protection Mechanisms 48

Protecting the CPU

o Need to ensure that the OS stays in control.

— i.e. need to prevent any given application from
‘hogging’ the CPU.
= use a timer device.

e Usually use a countdown timer, e.g.

1. set timer to initial value (e.g. OXFFFF).
2. every tick (e.g. 1us), timer decrements value.
3. when value hits zero, interrupt (note: into OS).

e (Modern timers have programmable tick rate.)

Hence OS gets to run periodically and do its stuff.

Need to ensure only OS can load timer, and that
interrupt cannot be masked.

— use same scheme as for other devices.
— (viz. privileged instructions, memory protection)

Same scheme can be used to implement

time-sharing (more on this later).

OS Fdns Part 2: OS Functions — Structures & Protection Mechanisms 50

Memory Protection Hardware

> yes < e

i

\HO

vector to OS (address error)

Memory

o Hardware checks every memory reference.

o Access out of range = vector into operating
system (use interrupt/exception mechanism).

e Only allow update of base and limit registers in

kernel mode.

e Typically disable memory protection in kernel mode

(although a bad idea).

e In reality, more complex protection h/w used:

— main schemes are segmentation and paging
— (covered later on in course)

@ OS Fdns Part 2: OS Functions — Structures & Protection Mechanisms 49

Kernel-Based Operating Systems

App. App.

App.

App.

Unpriv \ x

/

....... nnnnon

Priv | Kernel

SIW

]

e Applications can't do /0O due to protection

= operating system does it on their behalf.

e Need secure way for application to invoke

operating system:

= require a special (unprivileged) instruction to
allow transition from user to kernel mode.

o Generally called a software interrupt since
operates similarly to (hardware) interrupt. . .

o Set of OS services accessible via software interrupt
mechanism called system calls.

® OS Fdns Part 2: OS Functions — Structures & Protection Mechanisms 51

Microkernel Operating Systems Kernels versus Microkernels

App- ||| App- | | App- | | App. So why isn't everything a microkernel?

W/ e Lots of IPC adds overhead = microkernels usually

Server Server perform less well.

T\ T e Microkernel implementation sometimes tricky:
Unpriv . .
el : need to worry about synchronisation.
Priv Server Device Device

Driver Driver

e Microkernels often end up with redundant copies of
OS data structures.

Hence today most common operating systems blur
the distinction between kernel and microkernel.

e e.g. linux is “kernel”, but has kernel modules and
certain servers.

o Alternative structure:
push some OS services into servers

servers may be privileged (operate in kernel mode). e e.g. Windows NT was originally microkernel (3.5),

e Increases both modularity and extensibility. but now (4.0 onwards) pushed lots back into kernel

for performance.
o small kernel = known overhead. Delay between

event and user-level response can be bounded. o Still not clear what the best OS structure is, or

. . how much it really matters. . .
o Still access kernel via system calls, but need new y

way to access servers = interprocess o real-time systems need bounded OS delay
communication (IPC) schemes - see Part 3.

® OS Fdns Part 2: OS Functions — Structures & Protection Mechanisms 52 @ OS Fdns Part 2: OS Functions — Structures & Protection Mechanisms 53

Part 2: Summary so far Operating System Functions

You should now understand
o Regardless of structure, OS needs to securely

e What an OS is (abstractly) multiplex resources, i.e.

e Historical evolution of OS 1. protect applications from each other, yet

o Hardware support needed 2. share physical resources between them.

o tradeoffs:

dual mode operation

— protection (of devices, memory and CPU) — protection -vs- sharing
— need for sharing (of devices, memory and CPU) — throughput -vs- service to all
a |r-1terrupt mechanism e Also usually want to abstract away from harware
— timers details, i.e. OS provides a virtual machine:
o Different approaches to OS design — share CPU (in time) and provide each

application with a virtual processor,
— allocate and protect memory, and provide
applications with their own virtual address space,
— present a set of (relatively) hardware
independent virtual devices, and
divide up storage space by using filing systems.

@ OS Fdns Part 2: OS Functions — Summary to date 54 @ OS Fdns Part 2: OS Functions — Overview 55

Process Concept

e From a user's point of view, the operating system
is there to execute jobs (batch systems) or
programs (interactive systems).

e A process is a program/job in execution
(Think of “program/job™ in their executable form
after compilation and linking)

e a program/job is static, while a process is dynamic
like a book or music manuscript cf. reading or
playing them

e Process includes:

1. program counter

2. stack (for temporary variables, procedure
parameters, return addresses. Defines dynamic
state/scope.)

3. data section (for global variables - always in
scope.)

e Abstraction: processes execute on virtual
Processors

® OS Fdns Part 2: OS Functions — Processes 56

Process Control Block

Process Number (or Process ID)
Current Process State

CPU Scheduling Information

Program Counter

Other CPU Registers

Memory Mangement Information

Other Information
(e.qg. list of open files, name of
executable, identity of owner, CPU
time used so far, devices owned)

<¢== Refs to previous and next PCBS wmp

OS maintains information about every process in a
data structure called a process control block (PCB):

[]

Unique process identifier

Process state (Ready, Blocked, etc.)

CPU scheduling & accounting information
Program counter & CPU registers

Memory management information

® OS Fdns Part 2: OS Functions — Processes 58

Process States

admit dispatch release
(selected to run by
process-scheduler)

timeout
or yield

As a process executes, it changes state:

— New: the process is being created

Ready: the process is waiting for the CPU (and
is prepared to run at any time)

Running: instructions are being executed

Blocked: the process is waiting for some event
to occur (and cannot run until it does)

Exit: the process has finished execution.

The operating system is responsible for
maintaining the state of each process.

® OS Fdns Part 2: OS Functions — Processes 57

Context Switching

Process A Operating System Process B
running |
N .
idle Save. State into l:"CB A idle
: . ‘read]
(blocked Restore State from pcB 8 ——— 123%Y)
or ready)
running
) Save Stateinto PCBB “— NV __
idle ; ; idle
read, ')
(}.l) - Restore State from PCB A (blocked
executing| or ready)

e Process Context = machine environment during

the time the process is actively using the CPU.

e i.e. context includes program counter, general

purpose registers, processor status register, . . .

e To switch between processes, the OS must:

1. save the context of the currently executing
process (if any), and
2. restore the context of that being resumed.

e Time taken depends on h/w support.

® OS Fdns Part 2: OS Functions — Processes 59

Process Creation

Nearly all systems are hierarchical: parent
processes create children processes.

Resource sharing, alternatives are:

— parent and children share all resources.
— children share subset of parent's resources.
— parent and child share no resources.

e Execution:

— parent and children execute concurrently.
— parent can wait until children terminate.

Address space, alternatives are:

— child duplicate of parent.
— child has a program loaded into it.

e e.g. Unix:

— fork() system call creates a new process

— all resources shared (child is a clone).

— execve() system call used to replace the
process’ memory space with a new program.

NT/2000: CreateProcess() system call includes
name of program to be executed.

® OS Fdns Part 2: OS Functions — Processes 60

Process Blocking

e In general a process blocks on an event, e.g. until

— an |1/0O device completes an operation,
— another process sends a message

e Assume OS provides some kind of general-purpose
blocking primitive, e.g. await ().

o Need care handling concurrency issues, e.g.

if (no key being pressed) {
await (keypress) ;

print ("Key has been pressed!\n");

}
// handle keyboard input

What happens if a key is pressed at the first '{" ?

e See part 3 for concurrency control

® OS Fdns Part 2: OS Functions — Processes 62

Process Termination

e Process executes last statement and asks the
operating system to delete it (exit):

— output data from child to parent (wait)
— process’ resources are deallocated by the OS.

e Process performs an illegal operation, e.g.

— makes an attempt to access memory to which it
is not authorised,
— attempts to execute a privileged instruction

e Parent may terminate execution of child processes
(abort, kill), e.g. because

— child has exceeded allocated resources

— task assigned to child is no longer required

— parent is exiting (“cascading termination”)

— (many operating systems do not allow a child to
continue if its parent terminates)

e e.g. Unix has wait (), exit() and kill()

e e.g. NT/2000 has ExitProcess() for self and
TerminateProcess() for others.

® OS Fdns Part 2: OS Functions — Processes 61

Scheduling Queues

Job

Queue Ready Queue

timeout or yield

Wait Queue(s)

—]
event event-wait

Cre@fe Creafe “+---s-+sesesesseaseseseseiesiesiesieiesesseseseseesennnnd
(batch) (interactive)

e Job Queue: batch processes awaiting admission.

e Ready Queue: set of all processes residing in main
memory, ready and waiting to execute.

o Wait Queue(s): set of processes waiting for an |/0O
device (or for other processes)

e Long-term & short-term schedulers:

— Job scheduler selects which processes should be
brought into the ready queue.

— CPU scheduler selects which process should be
executed next and allocates CPU.

@ OS Fdns Part 2: OS Functions — Process Life-cycle 63

CPU-1/0 Burst Cycle

Frequency

CPU Burst Duration (ms)

e CPU-1/0 Burst Cycle: process execution consists
of a cycle of CPU execution and 1/0 wait.

e Processes can be described as either:

1. 1/0O-bound: spends more time doing 1/0 than
computation; has many short CPU bursts.

2. CPU-bound: spends more time doing
computations; has few very long CPU bursts.

e Observe most processes execute for at most a few
milliseconds before blocking

= need multiprogramming to obtain decent overall
CPU utilization.

@ OS Fdns Part 2: OS Functions — Process Life-cycle 64

Idle system

What do we do if there is no ready process?
e halt processor (until interrupt arrives)
saves power (and heat!)

increases processor lifetime

) 4 might take too long to stop and start.
e busy wait in scheduler
quick response time
) 4 ugly, useless
e invent idle process, always available to run

gives uniform structure
could use it to run checks
X uses some memory

X can slow interrupt response

In general there is a trade-off between responsiveness
and usefulness.

@ OS Fdns Part 2: OS Functions — CPU Scheduling 66

CPU Scheduler

Recall: CPU (process or thread) scheduler selects one
of the ready processes and allocates the CPU to it.

e There are a number of occasions when we
can/must choose a new process to run:

1. a running process blocks (running — blocked)
2. a timer expires (running — ready)
3. a waiting process unblocks (blocked — ready)

4. a process terminates (running — exit)

o If only make scheduling decision under 1 and 4 =
have a non-preemptive scheduler:

simple to implement
X open to denial of service
— e.g. Windows 3.11, early MacOS.

e If under 1, 2, 3 and 4 the scheduler is preemptive.

solves denial of service problem
faster response to events

X more complicated to implement

X introduces concurrency problems. . .

@ OS Fdns Part 2: OS Functions — CPU Scheduling 65

Scheduling Criteria

A variety of metrics may be used:

1. CPU utilization: the fraction of the time the CPU
is being used (and not for idle process!)

2. Throughput: # of processes that complete their
execution per time unit.

3. Turnaround time: amount of time to execute a
particular process.

4. Waiting time: amount of time a process has been
waiting in the ready queue.

5. Response time: amount of time it takes from when
a request was submitted until the first response is
produced (in time-sharing systems)

Sensible scheduling strategies might be:
e Maximize throughput or CPU utilization

e Minimize average turnaround time, waiting time or
response time.

Also need to worry about fairness and liveness.

@ OS Fdns Part 2: OS Functions — CPU Scheduling 67

First-Come First-Served Scheduling SJF Scheduling

e FCFS depends on order processes arrive, e.g. Intuition from FCFS leads us to shortest job first
Process Burst Time (SJF) scheduling.
Py 25 e Associate with each process the length of its next
P, 4 CPU burst (assume for now we can know this).
Ps ! o Use these lengths to schedule the process with the
o If processes arrive in the order Py, P, Ps: shortest time (FCFS can be used to break ties).
P - R, | For example (note no preemption):
0 % 2 36 Process Arrival Time Burst Time
— Waiting time for P;=0; P,=25; P3=29; P, 0 7
— Average waiting time: (0 + 25 + 29)/3 = 18.]1;2 2 4
- 3 4 1
o If processes arrive in the order P3, P», P;: P, 5 4
[» [0&] A | 7 B = [=& |
0 7 1 36 0 7 8 12 16
— Waiting time for Py=11; P,=7; P3=0; e Wiaiting time for P;=0; P,=6; P3=3; P4=T,;

— Average waiting time: (11+7+0)/3 = 6.

— i.e. three times as good! o Average waiting time: (0+6+3+47)/4 =4.

SJF is optimal in that it gives the minimum average
waiting time for a given set of processes.

[]

First case poor due to convoy effect.

@ OS Fdns Part 2: OS Functions — CPU Scheduling 68 @ OS Fdns Part 2: OS Functions — CPU Scheduling 69
SRTF Scheduling Predicting Burst Lengths
e SRTF = Shortest Remaining (of burst)-Time First. e For both SJF and SRTF require the next “burst

. . length” for each process => need to estimate it.
e Just a preemptive version of SJF.
e Can be done by using the length of previous CPU

bursts, using exponential averaging:

1. t, = actual length of nt* CPU burst.
2. 7,41 = predicted value for next CPU burst.

e i.e. if a new process arrives with a CPU burst
length less than the remaining time of the current
executing process, preempt.

For example: 3. For a,0 < o < 1 define:
Process Arrival Time Burst Time

2 0 7 Tyl = atp + (1 — @)1y

Py 2 4

P, 4 1 o If we expand the formula we get:

P 5 4 .

‘ Tng1 = tp+. .+ (1—a)at, _j+.. .+(1—a)"

(A= B[~[= [~
) 45 7 11 16 where 73 is some constant.

e Choose value of o according to our belief about
N _ the system, e.g. if we believe history irrelevant,
e Average waiting time: (9+1+0+2)/4 =3. choose o =~ 1 and then get 7,1 ~ t,,.

e Waiting time for P;=9; P,=1; P3=0; P4=2;

What are the problems here? e In general an exponential averaging scheme is a
good predictor if the variance is small.

@ OS Fdns Part 2: OS Functions — CPU Scheduling 70 @ OS Fdns Part 2: OS Functions — CPU Scheduling 71

Round Robin Scheduling

Define a small fixed unit of time called a quantum (or
time-slice), typically 10-100 milliseconds. Then:

e Process at the front of the ready queue is allocated
the CPU for (up to - may block) one quantum.

e When the time has elapsed, the process is
preempted and appended to the ready queue.

Round robin has some nice properties:

e Fair: if there are n processes in the ready queue
and the time quantum is g, then each process gets
1/nth of the CPU (ignoring blocking).

e Live: no process waits more than (n — 1)g time
units before receiving a CPU allocation.

o Typically get higher average turnaround time than
SRTF, but better average response time.

But tricky choosing correct size quantum:
e g too large = FCFS/FIFO
e ¢ too small = context switch overhead too high

e favours CPU-bound processes.

@ OS Fdns Part 2: OS Functions — CPU Scheduling 72

Dynamic Priority Scheduling

e Use same scheduling algorithm, but allow priorities
to change over time.

e e.g. simple aging:
— processes have a (static) base priority and a
dynamic effective priority.
— if process starved for k seconds, increment
effective priority.
— once process runs, reset effective priority.
e e.g. computed priority:
— first used in Dijkstra’s THE (1968)
— timeslots: ..., ¢t t+1, ...
— in each time slot ¢, measure the CPU usage of
process j: u’
— priority for process j in slot ¢ + 1:
pg-ﬁ-l = f(uiapiv ug—l’pg—l’ =)
- eg Pl =pi/2+ ky
— penalises CPU bound — supports |/O bound.

e today, overhead of such computation considered
unacceptable. . .

@ OS Fdns Part 2: OS Functions — CPU Scheduling 74

Static Priority Scheduling

Associate an (integer) priority with each process

For example:

0 | system internal processes

1 | interactive processes (staff)

2 | interactive processes (students)
3 | batch processes.

Then allocate CPU to the highest priority process:

— 'highest priority’ typically means smallest integer
— get preemptive and non-preemptive variants.

e.g. SJF is a priority scheduling algorithm where
priority is the predicted next CPU burst time.

Problem: how to resolve ties?

— round robin with time-slicing

— allocate quantum to each process in turn.

— Problem: biased towards CPU intensive jobs.
* per-process quantum based on usage?
% ignore?

Problem: starvation. . .

@ OS Fdns Part 2: OS Functions — CPU Scheduling 73

Multilevel Queues

e Ready queue partitioned into separate queues, e.g.

— foreground (interactive),
— background (batch)

e Each queue has its own scheduling algorithm, e.g.

— foreground: RR,
— background: FCFS

e Scheduling must also be done between the queues:

— Fixed priority scheduling; i.e., serve all from
foreground and then from background.
Possibility of starvation.

— Time slice: each queue gets a certain amount of
CPU time which it can divide between its
processes, e.g. 80% to foreground via RR, 20%
to background in FCFS.

o Also get multilevel feedback queue:

— as above, but processes can move between the
various queues.

— can be used to implement dynamic priority
schemes, among others.

@ OS Fdns Part 2: OS Functions — CPU Scheduling 75

Multilevel Feedback Queue

e Example: three queues

1. Qo, 8 millisecond quantum,
2. 1, 16 millisecond quantum,
3. @2, FCFS (run to completion).

e Processes enter tail of)y and eventually get to
execute for 8ms. If not finished, preempted and
moved to tail of Q;. Eventually gets to execute for
16ms. If still not complete, preempted and moved
to tail of Q5.

@ OS Fdns Part 2: OS Functions — CPU Scheduling 76

Memory Management

In a multiprogramming system:
® many processes in memory simultaneously
e every process needs memory for:

— instructions (“code” or “text"),
— static data (in program), and
— dynamic data (heap and stack).

e OS also needs memory for its code and data.

= must share memory between OS and k processes.
The memory magagement subsystem handles:

1. Relocation

2. Allocation
3. Protection
4. Sharing
5

. Logical Organisation (OS + compiler + runtime
system)

6. Physical Organisation

@ OS Fdns Part 2: OS Functions — Memory Management 78

Processes - summary
You should now understand:

e What a process is

e Process states and PCBs

e Scheduling queues

o What a CPU scheduler does
e Criteria for scheduling

e Various strategies:

first-come first-server

— shortest job first

— shortest remaining time first

— round robin

— static and dynamic priorities

— use of more than one scheduling queue

@ OS Fdns Part 2: OS Functions — CPU Scheduling 7

Virtual Address Space of a Process

background /revision
Usually allocate half (msb of address = 0/1) to OS

e.g. 16-bit addresses - can address 64Kbytes
suppose user-space 0 to 32K-1
OS-space 32K to 64K-1

0Ox0000
user
OX7FFF
""""" Ox8000
0s
OXFFFF

e.g. 32-bit addresses - can address 4Gbytes

Ox0000 0000

OX7FFF FFFF
Ox8000 0000

OXFFFF FFFF

These are Virtual or Logical Addresses.

® OS Fdns Part 2: OS Functions — Relocation 79

The Address Binding Problem

Consider the following simple program:

int x, y;
x = 5;
y =x+ 3;

We can imagine that this would result in some
assembly code which looks something like:

str #5, [x] // store 5 into address x in memory
1ldr R1, [x] // load value of x from memory into R1

add R2, R1, #3 // add 3 to it - into R2

str R2, [yl // store result in addr y in memory

note the distinction between address and contents,
e.g. address [x] is loaded with value/contents 5

Then the address binding problem is:
what values do we give to addresses [x] and [y] ?

This is a problem because we don't know where in
memory our program will be loaded when we run it:

e e.g. if loaded at 0x1000, then x and y might be
stored at 0x2000, but if loaded at 0x5000, then x
and y might be at 0x6000.

® OS Fdns Part 2: OS Functions — Relocation 80

Static relocation - partitions (1970’s)

How can we support multiple virtual processors in a
single address space?

o statically divide memory into multiple fixed size
partitions of different sizes:

— e.g. bottom partition contains OS, remaining
partitions each for exactly one process at once.

— when a process terminates (or blocks) its
partition becomes available to new processes,
e.g. 0S/360 MFT

— a process is always loaded into the same
partition (static address translation).

e BUT - need to protect OS and user processes from
malicious programs:

— need base and limit registers to restrict process
to its partition

update values when a new processes is scheduled
NB: can be used for relocation as well as
protection!

then don't need static partitions - processes can
be loaded into any available, large-enough space.

® OS Fdns Part 2: OS Functions — Relocation 82

Address Binding and Relocation

To solve the problem, we need to translate between
“program /virtual addresses” and “real/physical
addresses”.

This can be done:

e at compile time:

requires knowledge of absolute addresses
— e.g. DOS .com files

e at load time:

— when program loaded, work out position in
memory and update code with correct addresses
must be done every time program is loaded

— ok for embedded systems / boot-loaders

e at run-time:

— get some hardware to automatically translate
between program and real addresses.

no changes at all required to program itself.
most popular and flexible scheme, providing we
have the requisite hardware (MMU).

® OS Fdns Part 2: OS Functions — Relocation 81

Dynamic (run-time) address translation

Mapping of logical to physical addresses is done at
run-time by Memory Management Unit (MMU), e.g.

Protection and Relocation Registers

no _|_
—_— —_
physical

yes address

logical
address

Memory

address fault

1. Relocation register holds the value of the base
address owned by the process.

2. Relocation register contents are added to each
memory address before it is sent to memory.

3. e.g. DOS on 80x86 — 4 relocation registers,
logical address is a tuple (s, 0).

4. NB: process never sees physical address — simply
manipulates logical addresses.

5. OS has privilege to update relocation register.

® OS Fdns Part 2: OS Functions — Relocation 83

Segmentation

Logical Physical
Address Memory
T, / Space

stack

procedure

:

2
: sys librarys,

Limit _ Base main()
1000 | 5900
200 0
5000 | 200 5200
200 | 5700
300 | 5300

main()

AW~ D

5300

.

symbols

5600

5700

Segment 5900
Table

sys library

procedure

6900

Physical memory above shows user segments for a
single program (not multi-program, not multi-user)

User sees memory as a set of segments of no
particular size, with no particular ordering

Segmentation supports this user-view of memory
— logical address space is a collection of (typically
disjoint) segments.

Segments have a name (or a number) and a length
— addresses specify segment and offset.

@ OS Fdns Part 2: OS Functions — Segmentation 84

Sharing and Protection

Big advantage of segmentation is that protection is
per segment; i.e. corresponds to logical view.

Protection bits associated with each ST entry
checked in usual way

e.g. instruction segments (should be non-self
modifying!) thus protected against writes etc.

e.g. place each array in own seg = array limits
checked by hardware

Segmentation also facilitates sharing of code/data

— each process has its own STBR/STLR

— sharing is enabled when two processes have
entries for the same physical locations.

— for data segments can use copy-on-write (see
later under paging).

Several subtle caveats exist with segmentation —
e.g. jumps within shared code to addresses of form
(s,d) fix segment numbers.

e.g. Multics, MU5 = ICL 2900, George3 OS.

@ OS Fdns Part 2: OS Functions — Segmentation 86

Implementing Segments

Maintain a segment table for each process:

Segment | Access | Base | Size | Others!

If program has a very large number of segments
then the table is kept in memory, pointed to by ST
base register STBR

Also need a ST length register STLR since number
of segs used by different programs will differ widely

The table is part of the process context and hence
is changed on each process switch.

Algorithm:

1.

L]

Program presents address (s, d).
Check that s < STLR. If not, fault

Obtain table entry at reference s+ STBR, a tuple
of form (bs,ls)

If 0 < d < I, then this is a valid address at location
(bs, d), else fault

OS Fdns Part 2: OS Functions — Segmentation 85

Sharing Segments

Per-process Physical Memory
Segment
Tables SSystem
egment
N a Table a
B B
Shared
[DANGEROUS] [SAFE]

Sharing segments:

o wasteful (and dangerous) to store common

information on shared segment in each process
segment table

e assign each segment a unique System Segment

Number (SSN)

e process segment table simply maps from a Process

L]

Segment Number (PSN) to SSN

OS Fdns Part 2: OS Functions — Segmentation 87

Fragmentation Returns. . .

e Suppose that all segments of a process must be
loaded in memory when it is scheduled to run
(avoid if possible) - must find space for them all.

e Problem is that segs are of variable size = leads to
fragmentation of memory.

o Use best/first-fit, buddy algorithms etc.

e Processes may be delayed waiting for space to be
made (by swapping out others’ segs to compact
memory - consolidate free space).

e Tradeoff between memory-compaction/delay
depends on average segment size

e In general with small average segment sizes,
fragmentation is small.

o Fixed size small segments = paging! - see below.

e Segmentation + paging means that not every
segment need be loaded into memory when a
process is scheduled - “demand paging”. Hardware
for "demand segmentation” is possible too.

@ OS Fdns Part 2: OS Functions — Segmentation 88

Paging Pros and Cons

Virtual Memory

Page 0 .
Page 1 Physical Memory
Page 2 0
Page 3 A Page 4 1
Page 4 \ 1] 6 Page 3 2
\ o J 3
1 1 Page 0 4
5
Page 1 6
7
8

Page n-1

Pages may be sparse in VM, even without segments.
0= “doesn’t exist” i.e. “not in process VA space”

memory allocation easier.
X 0S must keep page table per process
no fragmentation of physical memory
X but get internal fragmentation.

clear separation between user and system
view of memory usage.

X additional overhead on context switching

@ OS Fdns Part 2: OS Functions — Paging 90

Paged Virtual Memory

logical address Page Table

o
’ S
-
B f o |
physical
address

Another solution is to allow a process (or segment of
a process) to exist in non-contiguous memory, i.e.

o divide physical memory into relatively small blocks
of fixed size, called frames or page-frames

o divide logical memory into blocks of the same size
called pages (typical value is 4K)

e each address generated by CPU is split into page
number p and page offset o (transparent).

o MMU uses p as an index into a page table.
e page table contains associated frame number f

e usually have |p| >> |f| = need valid bit.

@ OS Fdns Part 2: OS Functions — Paging 89

Structure of the Page Table

Different kinds of hardware support can be provided:

e Simplest case: set of dedicated relocation registers

— one register per page

— OS loads the registers on context switch

— fine if the page table is small. . . but what if
have large number of pages ?

o Alternatively keep page table in memory

— only one register needed in MMU (page table
base register (PTBR))
— OS switches this when switching process

e Problem: page tables might still be very big.

— can keep a page table length register (PTLR) to
indicate size of page table.
— or can use more complex structure (see later)

e Problem: need to refer to memory twice for every
‘actual’ memory reference. . .

= use a translation lookaside buffer (TLB)

@ OS Fdns Part 2: OS Functions — Paging 91

TLB Operation

Memory

TLB —>
f
P2 f
f
f

/777777777177
logical address :l

physical address
Page Table
page load TLB and
fault o) restart instruction

h
FNR] V] [

all address translation
is via the TLB

e On memory reference present TLB with logical
memory address

o If page table entry for the page is present then get

an immediate result

o If not then make memory reference to page tables,
and update the TLB

@ OS Fdns Part 2: OS Functions — Paging

Protection, Sharing and Usage Bits

|Frame Number|K|G|R|w|X|V|S|A|D|

kernel, global, read/write/execute, valid, swapped, accessed, dirty (written)

e Associate bits with each page — kept in TLB
and/or page tables. Page tables have more space.

o bits can be checked and set in TLB by hardware
during address translation

e read (R), write (W) and execute (E) for protection

o K: only accessible when executing in kernel mode
e protection violation causes h/w trap to OS code
o G: globally shared page - not owned by a process

e dirty (D) and accessed (A) to help in page
replacement

e V: valid? - mapped into process address space?
- if invalid = trap to OS handler

e S (in page table) is the page in main memory or
only in swap space on disk? (for demand paging)

@ OS Fdns Part 2: OS Functions — Paging

92

94

Multilevel Page Tables

e Most modern systems can support very large
(232,264) address spaces.

e Solution — split page table into several sub-parts

e Two level paging — page the page table

Base Register Virtual Address
|Ll Addressl | Pl | P2 | Offset |

[L2 Page Table l
b 0 I

n| Leaf PTE [ty

L1 Page Table
0

n| L2 Address

e For 64 bit architectures a two-level paging scheme
is not sufficient: need further levels.

o (even some 32 bit machines have > 2 levels).

o If segmentation supported, segment page tables
create two natural levels

@ OS Fdns Part 2: OS Functions — Paging

Shared Pages
Another advantage of paged memory is code/data
sharing, for example:
e binaries: editor, compiler etc.
e libraries: shared objects, dlls.
So how does this work?

e Implemented as two logical addresses which map
to one physical address.

o If code is re-entrant (i.e. stateless, non-self
modifying) it can easily be shared between users.

e Otherwise can use copy-on-write technique:

— mark page as read-only in all processes.
— if a process tries to write to page, will trap to
OS fault handler.
— can then allocate new frame, copy data, and
create new page table mapping.
e (may use this for lazy data sharing too).

Requires additional book-keeping in OS, but worth it,
e.g. over 40Mb of shared code on my linux box.

@ OS Fdns Part 2: OS Functions — Paging

Paged segments Summary of memory management

Many systems (past and present) support(ed) both You should now understand:

segmentation and paging. e what memory management aims to achieve

e Segments allow logical structure to be expressed -
natural unit for protection and sharing.

[}

logical /virtual -vs- physical addresses

. - . static and dynamic address translation
e Paging supports efficient management of physical

memory. e segmentation: pros and cons, hardware support
e Segment page tables give natural multi-level page e paging: pros and cons, hardware support
tables. e that segmentation is often combined with paging

e - much research in 1970's . ..

e Demand paging means that segments do not
need to be loaded in advance of being addressed.
Pages are loaded into memory by the OS when a
page fault occurs in the TLB and the page is
marked as not present in main memory (swapped)
in the process page table.

@ OS Fdns Part 2: OS Functions — Segmentation with paging 96 @ OS Fdns Part 2: OS Functions — Summary of memory Management 97
File Management File Concept
text name user file-id information requested What IS a fl|6?
from file . . .
userspace _I _____ e e Basic abstraction for non-volatile storage.
filing system
Directory e Typically comprises a single contiguous logical
Service address space.
! e Internal structure:
Storage Service
1. None (e.g. sequence of words, bytes)
VO subsystern T TN TTTTTTTTTTTTT I 2. Simple record structures
Disk Handler — lines
— fixed length
Filing systems have two main components: — variable length
1. Directory Service 3. Complex structures

— formatted document

e maps from names to file identifiers. . .
P — relocatable object file

e handles access & existence control

. e Can simulate last two with first method by

2. Storage Service inserting appropriate control characters.
e provides mechanism to store data on disk

k . i] e All a question of who decides:
e includes means to implement directory service

— operating system
— program(mer).

@ OS Fdns Part 2: OS Functions — Filing Systems 98 @ OS Fdns Part 2: OS Functions — Files and File Meta-data 99

Naming Files

Files usually have at least two kinds of ‘name’:
1. System file identifier (SFID):
o (typically) a unique integer value associated with
a given file
e SFIDs are the names used within the filing
system itself

2. "Human" name, e.g. hello. java

o What users like to use
e Mapping from human name to SFID is held in a
directory, e.g.

Name SFID
hello. java 12353
Makefile 23812
README 9742

o Directories also non-volatile = must be stored
on disk along with files.

3. Frequently also get user file identifier (UFID).

e used to identify open files (see later)

® OS Fdns Part 2: OS Functions — Files and File Meta-data 100

File Meta-data Il
From case studies and via background reading, see:

e Location via:
chaining of disk blocks,
chaining in a map,
tables of block-pointers,
indirect blocks of block-pointers,
extent lists.

e hard and soft/symbolic links
o reference counts

o “file types” may be generalised so that directories,
devices and other objects may be named and
accessed uniformly via the same naming structure
and metadata.

® OS Fdns Part 2: OS Functions — Files and File Meta-data 102

File Meta-data |

Metadata Table
SFID (on disk)

£ (SFID) File Control Block

/ Type (file or directory)
/
4 Location on Disk
Size in bytes

\ Time of creation

\] Access permissions

In addition to their contents and their name(s), files
typically have a number of other attributes, e.g.

Location: file location on device (several schemes
possible, see UNIX case study)

Size: current file size

Type: if system supports different types
Protection: controls who can read, write, etc.
Time, date, and user identification: data for
protection, security and usage monitoring.

Together this information is called meta-data.
It is stored in a file control block.

® OS Fdns Part 2: OS Functions — Files and File Meta-data 101

Directory Name Space (1)

What are the requirements for our name space?
o Efficiency: locating a file quickly.
e Naming: user convenience

— allow two (or more generally N) users to have
the same name for different files
— allow one file have several different names

e Grouping: logical grouping of files by properties
(e.g. all Java programs, all games, .. .)

First attempts:
o Single-level: one directory shared between all users

= naming problem
> grouping problem

o Two-level directory: one directory per user

— access via pathname (e.g. bob:hello. java)
— can have same filename for different user
— but still no grouping capability.

@ OS Fdns Part 2: OS Functions — Directories 103

Directory Name Space (Il) Directory Name Space (lII)

@—%_ root @—%_ root
metadata

@ Mmetadata
(file control block,

(file control block,

o Get more flexibility with a general hierarchy. e Hierarchy good, but still only one name per file.
— directories hold files and/or [further] directories = extend to directed acyclic graph (DAG) structure:
— create/delete files relative to a given directory — allow shared files and subdirectories

e Human name is full path name, but can get long: — can have multiple aliases for the same thing
e.g. /usr/groups/X11R5/src/mit/server/os/4.2bsd /utils.c o Problems: dangling references and garbage

— offer relative naming
— login directory
— current working directory

e Solutions:

— reference counts

— back-references (but gives variable size records)

e What does it mean to delete a [sub]-directory?
e Problem: cycles. . .

® OS Fdns Part 2: OS Functions — Directories 104 ® OS Fdns Part 2: OS Functions — Directories 105
Directory Implementation File Operations (I)
/Ann/mail/B UFID| SFID |File Control Block (Copy)
L 1| 23421| location on disk, size,...
2 3250 " "
@ metadata 3| 10532 " "
Name [D[SFID 4 7122 " " 1
Ann |Y 1034—.—-Name D|SFID . . . 1
Bob [v]| 179 mail|v|2165-@—Name|D|SFID ! ! ! |
I A |N| 5797 sent|Y| 434 I
I lookup_mail in B |N|[2459 . .
Lo |;l71?2 Ann directory 7oy 5 e Opening a file: UFID = open(<pathname>)
rgg upirez :: lc.mk“P B in
¢ dreeteny mail directory 1. directory service recursively searches directories
for components of <pathname>
o Directories are non-volatile = store as “files” on 2. if all goes well, eventually get SFID of file.
disk, each with own SFID. 3. copy file control block into memory.
e Must be different types of file (for traversal) 4. create new UFID and return to caller.
° Exp“cit directory operations include: o Create a new file: UFID = create(<pathname>)
— create directory e Once have UFID can read, write, etc.
- (?elete directory — various modes (see next slide)
— list contents . .
— lookup (name - SFID) e Closing a file: status = close(UFID)
— select current working directory 1. copy [updated] file control block back to disk.
— insert an entry for a file (a “link”) 2. invalidate UFID

@ OS Fdns Part 2: OS Functions — Directories 106 @ OS Fdns Part 2: OS Functions — Filesystem Interface 107

File Operations (ll)

start of file end of file —‘
1 already accessed| to be read v

=

current _f

file position

Associate a cursor or file position with each open
file (viz. UFID), initialised to start of file.

Basic operations: read next or write next, e.g.

— read(UFID, buf, nbytes), or
— read (UFID, buf, nrecords)

[]

Sequential Access: above, plus rewind (UFID).

Direct Access: read N or write N

— allow “random” access to any part of file.
— can implement with seek (UFID, pos)

Other forms of data access possible, e.g.

— append-only (may be faster)
— indexed sequential access mode (ISAM)

@ OS Fdns Part 2: OS Functions — Filesystem Interface 108

Other Filing System lIssues

o Access Control: file owner/creator should be able
to control what can be done, and by whom.

— access control normally a function of directory
service = checks done at file open time

— various types of access, e.g.
« read, write, execute, (append?),
+ delete, list, rename

— more advanced schemes possible (see later)

o Existence Control: what if a user deletes a file?

— probably want to keep file in existence while
there is a valid pathname referencing it

— plus check entire FS periodically for garbage

— existence control can also be a factor when a file
is renamed /moved.

e Concurrency Control: need some form of locking
to handle simultaneous access

— may be mandatory or advisory
— locks may be shared or exclusive
— granularity may be file or subset

@ OS Fdns Part 2: OS Functions — Filesystem Interface 110

File and Directory (Composite)
Operations
o CREATE file/directory - implementation

1. get a FCB and its SFID from the file system

2. add entry to parent directory (name, type, SFID)

3. remove block(s) from free-block list as required
and record in FCB, plus other metadata

o DELETE file/directory - implementation

1. remove entry from parent directory
2. add allocated blocks to free-block list
3. add FCB to FCB-free-list

Consider

Main memory is lost on a crash

When are updates written out to disk?
Consider a crash between 1,2,3 above

Restart procedure includes a consistency check
(that all blocks/FCBs are allocated XOR on free lists)

@ OS Fdns Part 2: OS Functions — Filesystem Interface 109

Summary of Part 2

You should now understand:
e OS evolution

e alternative OS structures
e OS support for processes

CPU scheduling

® memory management

— hardware support for segmentation and paging
— hardware-software interaction
— pros and cons of segmentation and paging

[}

file management
(UNIX case study contains examples)

@ OS Fdns Part 2: OS Functions — Summary of Part 2 111

